小学阶段,计算失误是多方面能力缺失的综合表现,比如运算法则、性质、定律、计算公式等基础知识没有掌握牢固,或者不能够合理灵活地运用这些知识。即使孩子在计算中很细心很认真,但由于所需要的基本知识的欠缺而出现看似很简单的错误。即使孩子在计算中很细心很认真,但由于所需要的基本知识的欠缺而出现看似很简单的错误。
“粗心、马虎”也不能完全和“学习不认真,学习态度不端正”划等号。有时即使孩子在计算中很细心很认真,但还是会出现看似很简单的错误。粗心马虎,有的是性格问题,急性子爱马虎;有的是态度问题,对学习不认真就容易马虎;有的是熟练问题,对知识半生不熟最容易马虎;有的是认识问题,没认识到马虎的危害。
其实,小学生粗心马虎是很普遍的现象,但也是很正常的。粗心与小学生的生理、心理和性格特点有关,与学生的阅历和生活习惯有关,与个人的学习能力也有密切的联系。有研究表明:学生在计算中暴露出的这种“粗心、马虎”是一种合乎认知规律的正常心理现象。
因此,家长不应一味地责怪、怀疑孩子的学习态度和认真程度。要做的是引导、帮助孩子对计算错误进行心理分析,找出具体原因,区别对待,有的放矢地进行指导。并针对性地制定具体细致的防范措施和规则,对症下药,查漏补缺,扫清计算上的障碍,为进一步提升计算能力做好基础工作。孩子只有改变了认为“粗心”是出错主要原因的错误看法后,才能产生想提高计算正确率的愿望。
小学生计算失误,归纳起来主要有以下几方面的原因:
1、视觉迁移引起的感知错误
小学生在计算时,首先是通过感觉器官来感知数、符号或数的符号组成的算式,即看题,读题,审题。小学生感知事物的特点是比较笼统、粗糙的;不具体,不精细、不准确;感知事物的能力不仔细、不全面;往往只注意到一些孤立的、感觉上的、表面的现象,不去仔细观察事物之间的关系、联系和特征。因而头脑中留下的印象缺乏整体性。而且小学生感知的目的性较低,他们一般还不会独立地给自己提出感知任务,即使对于老师提出的任务也不能很好地排除干扰,集中感知事物。再加上学生在看、读、审、算以及抄写过程中急于求成,计算试题没有情节并且外观形式简单、单调,不易引起学生兴趣,容易造成学生注意力不集中。同时,孩子在计算时往往只感知数据、符号的本身而较少考虑其意义,这时,遇到相似或相近的数字、符号,往往还没有看清楚就动笔算。在很多时候,脱式计算中上一行的数字到下一行就写错了,或者将不同的数字写成同一个数字。有时抄题时,抄了这一题的前半部,下题的后半部,首尾不符。
针对小学生的这种心理特点,有的老师非常重视首次新知识的感知,激发学生的学习积极性。因为首次感知新知识时,能在学生的大脑皮层留下深深的印象。如果首次感知不准确,造成的不良后果在短时间内难以清除。因此,数学试题计算时,要最大限度地调动学生的积极性,多让学生动手、动脑、动眼、动口,促进多种感官的协同参与和认知。
2、注意力发展不完善,注意稳定性不高。
注意是心理活动对一定对象的指向与集中,就是当人们的心理活动有选择性地指向一定对象,而不理会其他对象时,这就是注意。小学生的注意力既不易集中又不善于分配,有意注意总是让位于无意注意,并且注意到的范围比较狭窄。他们在观察试题中抽象的数字及运算符号时,往往只注意到一些孤立的现象,不能看出他们之间的联系。对事物的观察缺乏整体性,而且注意力集中的时间短暂。小学生由于注意品质不佳,常表现为,思维与书写不同步,注意力不是集中在“笔尖上”,而是一方面手中在抄写,另一方面注意力已经转移到下一步计算方法上。小学生这个“注意力不集中、观察事物缺乏整体性、注意力集中时间短”的生理、心理特点就使他们容易产生计算错误。
(1)、考虑不全。
小学生不善于分配和转移自己的注意力,造成计算中不少的错误。学生在学习新的计算方法的时候,重点注意新学的方法,往往造成口算的错误,或者注意新学的知识点,在计算的过程中忽略了原来的知识点。
(2)、丢三拉四。
小学生的年龄特征决定了他们做事的时候经常会出现遗忘,或将未被强化的短时记忆中的信息给弄丢了的情况。比如:学习乘法计算的时候,经常出现忘记加上进位“几”的情形;在计算多位数的连续进位和多位数的连续退位时,往往“进”了却忘了加,或只记得个位满十向十位上进一,而忘记十位上也满十要向百位进一;在计算有余数的除法时,前一位的余数常常忘记落下来。
(3)、注意力不集中。
学生计算中的错误,很多时候是由于心不在焉、注意力不集中造成的。有些计算题数据较大,外形过于繁琐时,学生就会产生排斥心理,表现为急躁、不耐心、不认真审题,从而导致出错。这也是由于注意分散的原因而产生的。比如:草稿纸上的得数计算是正确的,但抄在作业本上就错了;在有余数的除法竖式计算中,学生往往在写结果时把余数遗漏;在递等式的计算中,脱式计算有时只脱了一步,而把末尾的一个数却遗漏了,不再往下计算了。
综上所述,说明小学生的注意力不稳定,容易分心。由于小学生正处于生长发育阶段,他们正由无意注意向有意注意发展,注意的品质还很不完善,把23看成32是注意的指向性、集中性尚待发展;把9写成6是注意的选择性较差;把4位数写成3位数是注意的广度和分配能力不够。有研究发现,7—10岁儿童的注意力可持续20分钟,10—12岁儿童为25分钟,12岁以上儿童可持续30分钟。因此在解答结构步骤较简单的题时,正确率比较高,而解答结构步骤较复杂的题时容易出错。
3、短时记忆较弱、记忆错漏。
短时记忆是指记忆时间在1秒左右的记忆。计算时经常需要短时记忆。有些学生“短时记忆”能力较弱,不能准确提取储存信息,造成计算错误。
一道计算题往往包括多步计算,中间得数需要进行短时记忆,而小学生由于急躁、抢时间、怕麻烦,使得储存的信息部分消失或暂时中断,造成"记忆性错漏"。比如,在连续退位减法中忘了退1,导致计算结果错误,像4020-199,学生很容易算成4020-199=3931,这就与中间得数的储存与回忆不完整有关。
识记从记忆的态度上可分为无意识记和有意识记两种。儿童越年幼,无意识记的成分越大。当学龄儿童在学习中负有明确的任务时,有意识记便开始占主导地位。低年级学生完成作业,他们对题目的注意便属于有意识记。有意识记的效果要受到学习的动机、任务性质的制约。一般来讲,学生当堂完成的作业,正确率较高,在课后则相应差些,回家作业则视家长对子女的监督态度而有明显差别,星期天的效率要比平时差些。可见,学生计算错误的原因还同学习的动机、意志力等有关。
4、不良学习心态
影响小学生在计算过程中产生的不良心态主要有三种,一是轻视心理,认为计算题是“死题目”,不需要动脑筋思考,忽视了对计算题的分析、计算完毕后的检查验算而造成的错误。二是畏难心理。认为计算题枯燥乏味,每当看到计算步骤繁多或数字较大的计算试题时,便会产生畏难情绪、厌烦情绪、缺乏恒心、耐心和信心,从而使得计算的正确率大打折扣。三是懒惰和厌恶。懒得动笔,不愿多写一个字,厌恶计算,无论数字大小,熟练与否,一律口算,不愿动笔演算,懒得拿草稿,甚至没有专门的草稿本、验算本。经常省略必要步骤,跳步,幻想快速、直接出结果,从而出错。
(1)、情感态度。学生对学习重要性和正确性的必要性认识不足,不感兴趣,解题只是为了应付老师的检查,没有力求准确的情绪倾向,心不在焉,敷衍了事,结果出现错误。有些学生见到数据较大、式子较长,心中就“烦”,因而不能认真审题,认真选择方法;有些学生见到难题,产生畏难情绪,浅尝辄止,敷衍了事……诸如此类现象,必然引起计算错误。其次是耐心不足,在计算时学生都希望很快能算出结果。在怕难怕繁、耐心不足的情况下进行计算,常会出现错误。
(2)、缺少认真负责、一丝不苟的学习心态,懒惰与厌恶。如由于写字潦草,结果是0、6不分,1、7互变,4、9混同等 ;由于学习用品不齐,一些学生连像样的一支铅笔,一块橡皮都没有,书写时乱涂乱改,在涂改中不仅卷面不整洁,而且常产生误看、误写的错误;由于铅笔太粗或太细,造成书写上的模糊而出错;计算无论数字大小,熟练与否,一律口算,不愿动笔演算;有的虽有算草,但写得乱七八糟;有些学生一次练习或测验下来连一张草稿纸都没有,而直接写在桌面上,垫板上,甚至手心手背上,……思想上的不重视,必然导致计算上的经常出错。
5、情绪不稳
小学生的情绪不够稳定,不同的情绪状态会直接影响计算过程。学生都希望算得又对又快。由于动机过强、急于求成,往往事与愿违。算式简单则麻痹轻视;计算复杂,又表现出厌烦、畏难情绪,导致错误。比如:4×25÷4×25一眼看到这题觉得非常简单,许多同学会算成4×25÷4×25=1,产生了运算顺序方面的错误。
有时教师对计算教学有所忽略,不重视计算教法的研讨,教学过程重算法轻算理,重练习轻理解,对学生的计算只重结果不重视过程,大搞题海战术。当学生出现错误时,教师没有分析错误原因而只是将其归罪于粗心。久而久之,就出现了教师埋怨学生计算能力差,学生见到计算就头疼的现象。学生认为计算题枯燥乏味,每当看到计算步骤多或者计算数字大时,就会产生厌烦的情绪,缺乏耐心和信心,因此计算就不准确。
6、思维定势的负迁移影响。
学生受到容易计算部分、能简便计算、比较熟悉部分等强刺激信息的作用而造成思维负迁移干扰,以至于把运算的法则,定律等知识忽略掉而造成干扰,对相似的知识点往往难于区分,而导致错导。如整数加法的法则是“数位对齐,个位算起”,在计算分数加减法时把分子、分母分别相加减,计算小数加减法时也把末尾对齐,这都是受整数加减法的干扰。再如在计算420÷42=10、630÷63=10这些口算题后,接着计算440-44时,由于思维定势学生往往会把减法错算成除法,即440÷44=10。
有时老师在教学时,对于某些计算固定方式,往往会采取强化训练,一遍两遍让学生不断重复地做,直到掌握这方面技能时才停止。这种强化作用对学生学习新的知识也会产生负迁移作用。
7、知识掌握缺陷引起的失误
小学数学中概念、性质、算理、法则、定律等基础知识,学生只有在深刻理解、牢固掌握的前提下,才可能正确、灵活地加以运用,形成计算技能。由于某些知识不理解、概念不清、没有真正地理解算理和熟练地掌握算法,对于计算法则、概念或运算顺序没有很好的掌握等,学生在计算时就会出现错误,并且学生自己并不意识到是错误的。
(1)、概念不清,不理解算理。概念是思维的基本形式,只有概念明确才能判断正确,运算推理才合乎逻辑。概念不清便会引起计算错误。同时笔算应把重点放在算理的理解上,既要学生懂得怎样算,更要学生懂得为什么要这样算。启发学生在理解算理的基础上,循理入法,以理驭法,并将以理驭法贯穿计算教学的始终。这样,学生在理解算理的基础上,通过反复训练,才能掌握法则。如有些学生计算: += ,2.3+7=3等,就充分说明学生对于分数、小数概念不清,对同分母分数加法计算法则、小数加法法则不熟悉,这是算理理解错误所造成的。任何数学运算都是建立在一系列数学概念之上的。概念不清、算理不理解会导致对数学运算理解不清或张冠李戴。如计算在有余数的除法中,虽然运用了商不变的性质,但是却忽视了余数的位置。即将余数的处理与直接运算的方式相混淆了,致使余数错误。
(2)、法则记错或记不准。有时学生算错,反复检查也不能发现,甚至告知他已经错了,让他重做,他仍沿用错误的方法。造成这一现象的原因是学生记错了法则且已经形成了错误的习惯。在计算时丢落某些步骤,很大可能也是因为法则记忆不准。
(3)、对于计算法则或运算顺序没有很好的掌握 。
有的学生轻视计算题的学习,往往只注重结果(计算方法),而不注重结果由来的过程。导致对计算法则或运算顺序、原理等不能很好地理解,只是死记硬背计算方法。这样的学生往往计算出错也比较多。比如:在加减运算中常常忘记借去的数或进上来的数;在小学乘法中常常忘记点上积的小数点。在四则混合运算中,必须同时注意运算法则、中间结果、运算方法、进位、退位的处理等。再如:1.25×(80+4)=1.25×80+4=100+4=104,错误原因是当初学习乘法分配律的时候,没有领会到1.25×(80+4)此题的意思就是求84个1.25,可以先求80个1.25,再加上4个1.25,一共还是84个1.25。领会到了这点自然就不会出现上述错误。
运算顺序是指同级运算从左往右依次演算;在没有括号的算式里,如果有加、减,也有乘、除,要先算乘除,后算加减;有括号的要先算小括号里面的,再算中括号里面的。小数、分数四则混合运算的顺序跟整数四则混合运算的顺序完全相同。因此,讲清这个运算顺序是很重要的。在讲解运算顺序时,应避免孩子出现下列问题:
脱式计算时,学生会出现如下错误的情况。如,36-135÷9=15(没有把“36-”照抄下来)或36-135÷9 =15-36(颠倒了两个数的位置) =21这类错误常在学生中出现。要反复讲清,为什么不能改变顺序,为什么未算的部分要照抄下来的道理。
8、基本口算不熟练,基本口算技能低下、不过关
口算既是学习笔算、珠算、估算、简算和四则混合运算的基础,也是计算能力的重要组成部分。笔算是以口算为基础的,笔算技能的形成直接受到口算准确和熟练程度的影响。笔算的正确与熟练在一定程度上是受口算制约的。任何一道整数、分数或小数的四则运算,最终都要分解成一些基本口算题加以解决。口算不熟,会导致计算缓慢;所有口算中只要有一个错误,计算结果必然错误。基本口算技能低下、不过关,势必会影响笔算的正确率。坚持口算训练,不仅能提高计算速度和正确率,也能有效地培养学生的注意力、记忆力和思维能力。
因此,培养学生的计算能力,首先要从口算能力着手。狠抓口算训练,应切实加强口算能力的培养,打好计算基础。在各个年级,口算的重点也不相同,粗略地说,一到三年级,20以内进位加法和退位减法以及连加减;表内乘法;100以内两位数加减整十数;万以内简单的不退位加减法,加减混合的两步计算题;较简单的一位数乘两位数;较简单的小数加法等都要求熟练口算。四年级以后,口算的内容就要逐步增多,不但要巩固过去的内容,口算同分母加减法和简单的异分母加减法等,还要在理解的基础上熟记一些数据,如:25×4,125×8,10到19的平方等,对所有能应用运算定律和性质进行口算的式题一律口算。
9、书写潦草,格式凌乱
书写马虎,字迹潦草,格式凌乱,结果是导致0、6不分,1、7互变,4、9混同;漏看、误看、看错、错写、漏写数字和运算符号等现象。由于学习用品不齐,一些学生连像样的一支铅笔,一块橡皮都没有。书写时乱涂乱改,在涂改中不仅卷面不整洁,而且常产生误看、误写的错误;由于铅笔太粗或太细,造成书写上的模糊而出错;计算无论数字大小,熟练与否,一律口算,不愿动笔演算;有的虽有算草,但写得乱七八糟;有些学生一次练习或测验下来连一张草稿纸都没有,而直接写在桌面上,垫板上,甚至手心手背上,……思想上的不重视、不良的习惯,必然导致计算频频出错。 书写认真,可减少错误,提高计算的正确率。
10、简算意识不强
简便算法是小学数学中的重要组成部分,让学生掌握简便计算的方法,是提高学生计算速度的重要途径。比较意识是解决问题的一个重要方向。解题时往往解决问题的途径很多,这就要求我们善于选优而从。有些学生缺乏比较意识,不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识。到了小学高段,计算的方法应灵活多样,应从多种解法中选择合理的算法,达到算法最优化。而实际上大部分学生的简算意识不强,计算方法不够合理、灵活。一道计算题如果没有要求简便计算,能简便计算的题目也不会去简便计算。拿到题后不审题、不分析、不观察试题的特征,往往找到一种方法就抱着死做、硬做、傻做下去,盲目去计算,即使繁冗,也不在乎,认为做对就行了。
不能根据具体算式的特点去主动选择最佳的解题方法进行计算,不善于选优而从。不懂得巧算,解题没有技巧性和灵活性。致使计算过程复杂繁冗而出错,这也是计算失误的重要原因。 另外,过多计算不必要计算的中间过程、中间结果,导致来回反复做正逆运算也是简算意识不强的一种表现。数学中有种解题方法:设数法,其本质就是利用题中部分中间量(未知)的大小与所求结果无任何影响的特点,用常数或未知数来代替中间量以方便解决问题的。所以,应养成不到万不得已不计算的习惯,要学会“投机取巧”。法国教育部部长阿莱格尔先生说:“数学的一个基本思想是,一个问题可以有多种解决途径,而不是只有唯一完美的解决办法。这种思想应当及早教给学生,否则容易使学生思想僵化,或形成简单推理的思维。”
11、不良学习、计算习惯的影响
计算错误率高,固然有概念不清、没有真正地理解算理和熟练地掌握算法等原因,但是没有养成良好的学习习惯是最重要原因。良好的学习习惯是保证计算正确的重要条件。部分学生由于对计算的重要性缺乏足够的认识,加上平时的训练度不够,方法欠妥,因而就养成了一些不良的计算习惯。如计算书写马虎,字迹潦草;计算时不注意审题就急着盲目去做;无论数字大小,是否熟练一律口算,不愿意动笔演算;有的演算不用演算纸,而是随意在桌子上、作业本或者试卷背面和边缘上演算;计算结束后也不会运用估算和验算等方法认真检查等等。由于不良的学习习惯,导致计算频频出错。
这些不良习惯包括:不审题、不分析、一律口算不愿动笔演算、不喜爱打草稿、草稿随意不规范、不正确使用草稿(演算本)、省略步骤(跳步)、书写潦草、不及时验算和检验、无简算意识、计算中间不必要的过程或结果、不统计分析总结反思错误的原因等。 上述各种造成小学生计算错误的原因并非孤立存在的,它们相互交错、互相影响。总之,只要能认真分析计算错误的原因,并积极采取相应的措施加以预防和纠正,就能不断地提高学生计算的正确率,使学生从小养成严谨、认真负责的学习态度,也培养了学生自我检查能力和良好的学习习惯。
整理于网络
关注智慧山微信公众号(zhihuishan2013)后,在公众号里回复以下关键字,即可得到相应资源!
公开课、作文、复习、试卷、知识点、活动、拼音、字母、钟表、看图写话、故事、双语故事、成语、常识、APP、语文、数学、英语、百家姓、三字经、唐诗三百首、自助查询、超级口算